

Report Number: 22-009810/D002.R000

Report Date: 09/27/2022 ORELAP#: OR100028

**Purchase Order:** 

08/17/22 11:27 Received:

| Customer:         | Prehemptive LLC |
|-------------------|-----------------|
| Product identity: | Batch 120 & 121 |

Client/Metrc ID:

**Laboratory ID:** 22-009810-0001

| Summary                                 |  |
|-----------------------------------------|--|
| Residual Solvents:                      |  |
| All analytes passing and less than LOQ. |  |
| Pesticides:                             |  |
| All analytes passing and less than LOQ. |  |
| Metals:                                 |  |
| Less than LOQ for all analytes.         |  |
| Microbiology:                           |  |
| Less than LOQ for all analytes.         |  |



Report Number: 22-009810/D002.R000

Report Date: 09/27/2022 ORELAP#: OR100028

**Purchase Order:** 

Received: 08/17/22 11:27

Prehemptive LLC **Customer:** 

Product identity: Batch 120 & 121

Client/Metrc ID:

Sample Date:

Laboratory ID: 22-009810-0001

**Evidence of Cooling:** No Temp: 24 °C **UPS** Relinquished by:

## **Sample Results**

| Microbiology            |                                                                                                                                                       |        |       |     |         |          |                                      |              |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-----|---------|----------|--------------------------------------|--------------|
| Analyte                 | Result                                                                                                                                                | Limits | Units | LOQ | Batch   | Analyzed | Method                               | Status Notes |
| Aerobic Plate Count     | <loq< td=""><td>10,000</td><td>cfu/g</td><td>10</td><td>2206962</td><td>08/19/22</td><td>AOAC 990.12 (Petrifilm)<sup>p</sup></td><td>pass</td></loq<> | 10,000 | cfu/g | 10  | 2206962 | 08/19/22 | AOAC 990.12 (Petrifilm) <sup>p</sup> | pass         |
| E.coli                  | <loq< td=""><td>100.00</td><td>cfu/g</td><td>10</td><td>2206961</td><td>08/19/22</td><td>AOAC 991.14 (Petrifilm)<sup>p</sup></td><td>pass</td></loq<> | 100.00 | cfu/g | 10  | 2206961 | 08/19/22 | AOAC 991.14 (Petrifilm) <sup>p</sup> | pass         |
| Total Coliforms         | <loq< td=""><td>100.00</td><td>cfu/g</td><td>10</td><td>2206961</td><td>08/19/22</td><td>AOAC 991.14 (Petrifilm)<sup>p</sup></td><td>pass</td></loq<> | 100.00 | cfu/g | 10  | 2206961 | 08/19/22 | AOAC 991.14 (Petrifilm) <sup>p</sup> | pass         |
| Mold (RAPID Petrifilm)  | <loq< td=""><td>1,000.</td><td>cfu/g</td><td>10</td><td>2206960</td><td>08/20/22</td><td>AOAC 2014.05 (RAPID)<sup>p</sup></td><td>pass</td></loq<>    | 1,000. | cfu/g | 10  | 2206960 | 08/20/22 | AOAC 2014.05 (RAPID) <sup>p</sup>    | pass         |
| Yeast (RAPID Petrifilm) | <loq< td=""><td>1,000.</td><td>cfu/g</td><td>10</td><td>2206960</td><td>08/20/22</td><td>AOAC 2014.05 (RAPID)<sup>p</sup></td><td>pass</td></loq<>    | 1,000. | cfu/g | 10  | 2206960 | 08/20/22 | AOAC 2014.05 (RAPID) <sup>p</sup>    | pass         |
| Salmonella spp. by PCR  | Negative                                                                                                                                              |        | /25g  |     | 2206930 | 08/18/22 | AOAC 2020.02 <sup>b</sup>            |              |
| EHEC including STEC     | Negative                                                                                                                                              |        | /25g  |     | 2206946 | 08/18/22 | AOAC RI 121806 <sup>p</sup>          |              |



Report Number: 22-009810/D002.R000

Report Date: 09/27/2022 ORELAP#: OR100028

**Purchase Order:** 

Received: 08/17/22 11:27

| Solvents                        | Method:                                                                                                                                                                                         | Residua | l Solve | ents by | GC/MS <sup>þ</sup> | <b>Units</b> μg/g              | Batch 22 | 207131                                                             | Analyz | <b>ze</b> 08/2 | 23/22 0 | 3:55 PM |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|--------------------|--------------------------------|----------|--------------------------------------------------------------------|--------|----------------|---------|---------|
| Analyte                         | Result                                                                                                                                                                                          | Limits  | LOQ     | Status  | Notes              | Analyte                        |          | Result                                                             | Limits | LOQ            | Status  | Notes   |
| 1-Butanol                       | <loq< td=""><td></td><td>500</td><td></td><td></td><td>1-Pentanol</td><td></td><td><loq< td=""><td></td><td>500</td><td></td><td></td></loq<></td></loq<>                                       |         | 500     |         |                    | 1-Pentanol                     |          | <loq< td=""><td></td><td>500</td><td></td><td></td></loq<>         |        | 500            |         |         |
| 1,1-Dichloroethane              | <loq< td=""><td></td><td>1.00</td><td></td><td></td><td>1,2-Dichloroet</td><td>hane</td><td><loq< td=""><td></td><td>1.00</td><td></td><td></td></loq<></td></loq<>                             |         | 1.00    |         |                    | 1,2-Dichloroet                 | hane     | <loq< td=""><td></td><td>1.00</td><td></td><td></td></loq<>        |        | 1.00           |         |         |
| 1,2-Dimethoxyethane             | <loq< td=""><td></td><td>50.0</td><td></td><td></td><td>1,4-Dioxane</td><td></td><td><loq< td=""><td></td><td>100</td><td></td><td></td></loq<></td></loq<>                                     |         | 50.0    |         |                    | 1,4-Dioxane                    |          | <loq< td=""><td></td><td>100</td><td></td><td></td></loq<>         |        | 100            |         |         |
| 2-Butanol                       | <loq< td=""><td></td><td>200</td><td></td><td></td><td>2-Ethoxyethar</td><td>nol</td><td><loq< td=""><td></td><td>30.0</td><td></td><td></td></loq<></td></loq<>                                |         | 200     |         |                    | 2-Ethoxyethar                  | nol      | <loq< td=""><td></td><td>30.0</td><td></td><td></td></loq<>        |        | 30.0           |         |         |
| 2-methyl-1-propanol             | <loq< td=""><td></td><td>500</td><td></td><td></td><td>2-Methylbutar<br/>(Isopentane)</td><td>ne</td><td><loq< td=""><td>1000</td><td>200</td><td>pass</td><td></td></loq<></td></loq<>         |         | 500     |         |                    | 2-Methylbutar<br>(Isopentane)  | ne       | <loq< td=""><td>1000</td><td>200</td><td>pass</td><td></td></loq<> | 1000   | 200            | pass    |         |
| 2-Methylpentane                 | <loq< td=""><td>60.0</td><td>30.0</td><td>pass</td><td></td><td>2-Propanol (If</td><td>PA)</td><td>&lt; LOQ</td><td>1000</td><td>200</td><td>pass</td><td></td></loq<>                          | 60.0    | 30.0    | pass    |                    | 2-Propanol (If                 | PA)      | < LOQ                                                              | 1000   | 200            | pass    |         |
| 2,2-Dimethylbutane              | <loq< td=""><td>60.0</td><td>30.0</td><td>pass</td><td></td><td>2,2-Dimethylp<br/>(neo-pentane)</td><td></td><td><loq< td=""><td>1000</td><td>200</td><td>pass</td><td></td></loq<></td></loq<> | 60.0    | 30.0    | pass    |                    | 2,2-Dimethylp<br>(neo-pentane) |          | <loq< td=""><td>1000</td><td>200</td><td>pass</td><td></td></loq<> | 1000   | 200            | pass    |         |
| 2,3-Dimethylbutane              | <loq< td=""><td>60.0</td><td>30.0</td><td>pass</td><td></td><td>3-Methyl-(1)-E</td><td>Butanol</td><td>&lt; LOQ</td><td></td><td>500</td><td></td><td></td></loq<>                              | 60.0    | 30.0    | pass    |                    | 3-Methyl-(1)-E                 | Butanol  | < LOQ                                                              |        | 500            |         |         |
| 3-Methylpentane                 | <loq< td=""><td>60.0</td><td>30.0</td><td>pass</td><td></td><td>Acetic Acid</td><td></td><td>&lt; LOQ</td><td></td><td>250</td><td></td><td></td></loq<>                                        | 60.0    | 30.0    | pass    |                    | Acetic Acid                    |          | < LOQ                                                              |        | 250            |         |         |
| Acetone                         | <loq< td=""><td>1000</td><td>200</td><td>pass</td><td></td><td>Acetonitrile</td><td></td><td>&lt; LOQ</td><td></td><td>100</td><td></td><td></td></loq<>                                        | 1000    | 200     | pass    |                    | Acetonitrile                   |          | < LOQ                                                              |        | 100            |         |         |
| Anisole                         | <loq< td=""><td></td><td>500</td><td></td><td></td><td>Benzene</td><td></td><td>&lt; LOQ</td><td>2.00</td><td>1.00</td><td>pass</td><td></td></loq<>                                            |         | 500     |         |                    | Benzene                        |          | < LOQ                                                              | 2.00   | 1.00           | pass    |         |
| Butanes (sum)                   | <loq< td=""><td>1000</td><td>400</td><td>pass</td><td></td><td>Butyl acetate</td><td></td><td>&lt; LOQ</td><td></td><td>500</td><td></td><td></td></loq<>                                       | 1000    | 400     | pass    |                    | Butyl acetate                  |          | < LOQ                                                              |        | 500            |         |         |
| Chloroform                      | <loq< td=""><td></td><td>1.00</td><td></td><td></td><td>Cyclohexane</td><td></td><td>&lt; LOQ</td><td></td><td>200</td><td></td><td></td></loq<>                                                |         | 1.00    |         |                    | Cyclohexane                    |          | < LOQ                                                              |        | 200            |         |         |
| DMSO                            | <loq< td=""><td></td><td>500</td><td></td><td></td><td>Ethanol</td><td></td><td>&lt; LOQ</td><td>1000</td><td>200</td><td>pass</td><td></td></loq<>                                             |         | 500     |         |                    | Ethanol                        |          | < LOQ                                                              | 1000   | 200            | pass    |         |
| Ethyl acetate                   | <loq< td=""><td>1000</td><td>200</td><td>pass</td><td></td><td>Ethyl benzene</td><td>•</td><td>&lt; LOQ</td><td></td><td>200</td><td></td><td></td></loq<>                                      | 1000    | 200     | pass    |                    | Ethyl benzene                  | •        | < LOQ                                                              |        | 200            |         |         |
| Ethyl ether                     | <loq< td=""><td></td><td>200</td><td></td><td></td><td>Ethyl Formate</td><td></td><td>&lt; LOQ</td><td></td><td>500</td><td></td><td></td></loq<>                                               |         | 200     |         |                    | Ethyl Formate                  |          | < LOQ                                                              |        | 500            |         |         |
| Ethylene glycol                 | <loq< td=""><td></td><td>200</td><td></td><td></td><td>Ethylene oxide</td><td>е</td><td>&lt; LOQ</td><td></td><td>1.00</td><td></td><td></td></loq<>                                            |         | 200     |         |                    | Ethylene oxide                 | е        | < LOQ                                                              |        | 1.00           |         |         |
| Formic Acid                     | <loq< td=""><td></td><td>250</td><td></td><td></td><td>Hexanes (sum</td><td>,</td><td>&lt; LOQ</td><td>60.0</td><td>150</td><td>pass</td><td></td></loq<>                                       |         | 250     |         |                    | Hexanes (sum                   | ,        | < LOQ                                                              | 60.0   | 150            | pass    |         |
| Isobutyl acetate                | <loq< td=""><td></td><td>500</td><td></td><td></td><td>Isopropyl acet</td><td>ate</td><td>&lt; LOQ</td><td></td><td>200</td><td></td><td></td></loq<>                                           |         | 500     |         |                    | Isopropyl acet                 | ate      | < LOQ                                                              |        | 200            |         |         |
| Isopropylbenzene<br>(Cumene)    | <loq< td=""><td></td><td>30.0</td><td></td><td></td><td>m,p-Xylene</td><td></td><td><loq< td=""><td>430</td><td>200</td><td>pass</td><td></td></loq<></td></loq<>                               |         | 30.0    |         |                    | m,p-Xylene                     |          | <loq< td=""><td>430</td><td>200</td><td>pass</td><td></td></loq<>  | 430    | 200            | pass    |         |
| Methanol                        | <loq< td=""><td>600</td><td>200</td><td>pass</td><td></td><td>Methyl-t-butyl</td><td>ether</td><td>&lt; LOQ</td><td></td><td>500</td><td></td><td></td></loq<>                                  | 600     | 200     | pass    |                    | Methyl-t-butyl                 | ether    | < LOQ                                                              |        | 500            |         |         |
| Methylacetat                    | <loq< td=""><td></td><td>500</td><td></td><td></td><td>Methylene chl</td><td></td><td>&lt; LOQ</td><td></td><td>1.00</td><td></td><td></td></loq<>                                              |         | 500     |         |                    | Methylene chl                  |          | < LOQ                                                              |        | 1.00           |         |         |
| Methylethylketone               | <loq< td=""><td></td><td>500</td><td></td><td></td><td>Methylisobuty</td><td>lketone</td><td><loq< td=""><td></td><td>500</td><td></td><td></td></loq<></td></loq<>                             |         | 500     |         |                    | Methylisobuty                  | lketone  | <loq< td=""><td></td><td>500</td><td></td><td></td></loq<>         |        | 500            |         |         |
| Methylpropane (Isobutane)       | <loq< td=""><td>1000</td><td>200</td><td>pass</td><td></td><td>n-Butane</td><td></td><td><loq< td=""><td>1000</td><td>200</td><td>pass</td><td></td></loq<></td></loq<>                         | 1000    | 200     | pass    |                    | n-Butane                       |          | <loq< td=""><td>1000</td><td>200</td><td>pass</td><td></td></loq<> | 1000   | 200            | pass    |         |
| n-Heptane                       | <loq< td=""><td>1000</td><td>200</td><td>pass</td><td></td><td>n-Hexane</td><td></td><td>&lt; LOQ</td><td>60.0</td><td>30.0</td><td>pass</td><td></td></loq<>                                   | 1000    | 200     | pass    |                    | n-Hexane                       |          | < LOQ                                                              | 60.0   | 30.0           | pass    |         |
| n-Pentane                       | <loq< td=""><td>1000</td><td>200</td><td>pass</td><td></td><td>n-Propanol</td><td></td><td>&lt; LOQ</td><td></td><td>500</td><td></td><td></td></loq<>                                          | 1000    | 200     | pass    |                    | n-Propanol                     |          | < LOQ                                                              |        | 500            |         |         |
| N,N-dimethylacetamide           | <loq< td=""><td></td><td>200</td><td></td><td></td><td>N,N-dimethylf</td><td>ormamide</td><td>&lt; LOQ</td><td></td><td>200</td><td></td><td></td></loq<>                                       |         | 200     |         |                    | N,N-dimethylf                  | ormamide | < LOQ                                                              |        | 200            |         |         |
| o-Xylene                        | <loq< td=""><td>430</td><td>200</td><td>pass</td><td></td><td>Pentanes (sur</td><td>,</td><td>&lt; LOQ</td><td>1000</td><td>600</td><td>pass</td><td></td></loq<>                               | 430     | 200     | pass    |                    | Pentanes (sur                  | ,        | < LOQ                                                              | 1000   | 600            | pass    |         |
| Propane                         | <loq< td=""><td>1000</td><td>200</td><td>pass</td><td></td><td>Propyl Acetate</td><td>•</td><td>&lt; LOQ</td><td></td><td>500</td><td></td><td></td></loq<>                                     | 1000    | 200     | pass    |                    | Propyl Acetate                 | •        | < LOQ                                                              |        | 500            |         |         |
| Pyridine                        | <loq< td=""><td></td><td>50.0</td><td></td><td></td><td>Sulfolane</td><td></td><td>&lt; LOQ</td><td></td><td>50.0</td><td></td><td></td></loq<>                                                 |         | 50.0    |         |                    | Sulfolane                      |          | < LOQ                                                              |        | 50.0           |         |         |
| Tetrahydrofuran                 | <loq< td=""><td></td><td>100</td><td></td><td></td><td>Toluene</td><td></td><td>&lt; LOQ</td><td>180</td><td>100</td><td>pass</td><td></td></loq<>                                              |         | 100     |         |                    | Toluene                        |          | < LOQ                                                              | 180    | 100            | pass    |         |
| Total Residual Solvents         | <loq< td=""><td></td><td>5,000</td><td></td><td></td><td>Total Xylenes</td><td></td><td>&lt; LOQ</td><td>430</td><td>400</td><td>pass</td><td></td></loq<>                                      |         | 5,000   |         |                    | Total Xylenes                  |          | < LOQ                                                              | 430    | 400            | pass    |         |
| Total Xylenes and Ethyl benzene | <loq< td=""><td></td><td>600</td><td></td><td></td><td>Trichloroethyle</td><td>ene</td><td><loq< td=""><td></td><td>1.00</td><td></td><td></td></loq<></td></loq<>                              |         | 600     |         |                    | Trichloroethyle                | ene      | <loq< td=""><td></td><td>1.00</td><td></td><td></td></loq<>        |        | 1.00           |         |         |
| Triethylamine                   | <loq< td=""><td></td><td>500</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>                                                                       |         | 500     |         |                    |                                |          |                                                                    |        |                |         |         |



Report Number: 22-009810/D002.R000

09/27/2022 Report Date: ORELAP#: OR100028

**Purchase Order:** 

Received: 08/17/22 11:27

| Pesticides           | Method: AO                                                                                                                    | AC 2007.01 & EN 15662 (m | ,                    | 207005                                       | <b>Analyze</b> 08/18/22 02:59 PM |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|----------------------------------------------|----------------------------------|
| Analyte              | Result                                                                                                                        | Limits LOQ Status Notes  | Analyte              | Result                                       | Limits LOQ Status Notes          |
| Abamectin            | <loq< td=""><td>0.25 0.070 pass</td><td>Acephate</td><td><loq< td=""><td>0.050 0.020 pass</td></loq<></td></loq<>             | 0.25 0.070 pass          | Acephate             | <loq< td=""><td>0.050 0.020 pass</td></loq<> | 0.050 0.020 pass                 |
| Acequinocyl          | <loq< td=""><td>0.030 0.025 pass</td><td>Acetamiprid</td><td><loq< td=""><td>0.050 0.050 pass</td></loq<></td></loq<>         | 0.030 0.025 pass         | Acetamiprid          | <loq< td=""><td>0.050 0.050 pass</td></loq<> | 0.050 0.050 pass                 |
| Aldicarb             | <loq< td=""><td>0.50 0.100 pass</td><td>Allethrin</td><td><loq< td=""><td>0.10 0.100 pass</td></loq<></td></loq<>             | 0.50 0.100 pass          | Allethrin            | <loq< td=""><td>0.10 0.100 pass</td></loq<>  | 0.10 0.100 pass                  |
| Atrazine             | <loq< td=""><td>0.0250 0.025 pass</td><td>Azadirachtin</td><td><loq< td=""><td>1.0 0.500 pass</td></loq<></td></loq<>         | 0.0250 0.025 pass        | Azadirachtin         | <loq< td=""><td>1.0 0.500 pass</td></loq<>   | 1.0 0.500 pass                   |
| Azoxystrobin         | <loq< td=""><td>0.010 0.010 pass</td><td>Benzovindiflupyr</td><td><loq< td=""><td>0.010 0.010 pass</td></loq<></td></loq<>    | 0.010 0.010 pass         | Benzovindiflupyr     | <loq< td=""><td>0.010 0.010 pass</td></loq<> | 0.010 0.010 pass                 |
| Bifenazate           | <loq< td=""><td>0.010 0.010 pass</td><td>Bifenthrin</td><td><loq< td=""><td>1.0 0.100 pass</td></loq<></td></loq<>            | 0.010 0.010 pass         | Bifenthrin           | <loq< td=""><td>1.0 0.100 pass</td></loq<>   | 1.0 0.100 pass                   |
| Boscalid             | <loq< td=""><td>0.010 0.010 pass</td><td>Buprofezin</td><td><loq< td=""><td>0.020 0.010 pass</td></loq<></td></loq<>          | 0.010 0.010 pass         | Buprofezin           | <loq< td=""><td>0.020 0.010 pass</td></loq<> | 0.020 0.010 pass                 |
| Captan               | <loq< td=""><td>0.700</td><td>Carbaryl</td><td><loq< td=""><td>0.025 0.025 pass</td></loq<></td></loq<>                       | 0.700                    | Carbaryl             | <loq< td=""><td>0.025 0.025 pass</td></loq<> | 0.025 0.025 pass                 |
| Carbofuran           | <loq< td=""><td>0.010 0.010 pass</td><td>Chlorantraniliprole</td><td><loq< td=""><td>0.020 0.010 pass</td></loq<></td></loq<> | 0.010 0.010 pass         | Chlorantraniliprole  | <loq< td=""><td>0.020 0.010 pass</td></loq<> | 0.020 0.010 pass                 |
| Chlordane (cis+trans | s) < LOQ                                                                                                                      | 0.100                    | Chlorfenapyr         | <loq< td=""><td>1.5 0.100 pass</td></loq<>   | 1.5 0.100 pass                   |
| Chlorpyrifos         | <loq< td=""><td>0.50 0.010 pass</td><td>Clofentezine</td><td><loq< td=""><td>0.010 0.010 pass</td></loq<></td></loq<>         | 0.50 0.010 pass          | Clofentezine         | <loq< td=""><td>0.010 0.010 pass</td></loq<> | 0.010 0.010 pass                 |
| Clothianidin         | <loq< td=""><td>0.025 0.025 pass</td><td>Coumaphos</td><td><loq< td=""><td>0.010 0.010 pass</td></loq<></td></loq<>           | 0.025 0.025 pass         | Coumaphos            | <loq< td=""><td>0.010 0.010 pass</td></loq<> | 0.010 0.010 pass                 |
| Cyantraniliprole     | <loq< td=""><td>0.010 0.010 pass</td><td>Cyfluthrin</td><td><loq< td=""><td>0.20 0.400 pass</td></loq<></td></loq<>           | 0.010 0.010 pass         | Cyfluthrin           | <loq< td=""><td>0.20 0.400 pass</td></loq<>  | 0.20 0.400 pass                  |
| Cyhalothrin,lambda   | <loq< td=""><td>0.0200 0.250 pass</td><td>Cypermethrin</td><td><loq< td=""><td>0.30 0.300 pass</td></loq<></td></loq<>        | 0.0200 0.250 pass        | Cypermethrin         | <loq< td=""><td>0.30 0.300 pass</td></loq<>  | 0.30 0.300 pass                  |
| Cyprodinil           | <loq< td=""><td>0.010 0.010 pass</td><td>Daminozide</td><td><loq< td=""><td>0.10 0.050 pass</td></loq<></td></loq<>           | 0.010 0.010 pass         | Daminozide           | <loq< td=""><td>0.10 0.050 pass</td></loq<>  | 0.10 0.050 pass                  |
| Deltamethrin         | <loq< td=""><td>0.50 0.500 pass</td><td>Diazinon</td><td><loq< td=""><td>0.020 0.010 pass</td></loq<></td></loq<>             | 0.50 0.500 pass          | Diazinon             | <loq< td=""><td>0.020 0.010 pass</td></loq<> | 0.020 0.010 pass                 |
| Dichlorvos           | <loq< td=""><td>0.050 0.050 pass</td><td>Dimethoate</td><td><loq< td=""><td>0.010 0.010 pass</td></loq<></td></loq<>          | 0.050 0.050 pass         | Dimethoate           | <loq< td=""><td>0.010 0.010 pass</td></loq<> | 0.010 0.010 pass                 |
| Dimethomorph         | <loq< td=""><td>0.050 0.050 pass</td><td>Dinotefuran</td><td><loq< td=""><td>0.050 0.050 pass</td></loq<></td></loq<>         | 0.050 0.050 pass         | Dinotefuran          | <loq< td=""><td>0.050 0.050 pass</td></loq<> | 0.050 0.050 pass                 |
| Diuron               | <loq< td=""><td>0.125 0.125 pass</td><td>Dodemorph</td><td><loq< td=""><td>0.050 0.050 pass</td></loq<></td></loq<>           | 0.125 0.125 pass         | Dodemorph            | <loq< td=""><td>0.050 0.050 pass</td></loq<> | 0.050 0.050 pass                 |
| Endosulfan I (alpha) | <loq< td=""><td>2.5 0.050 pass</td><td>Endosulfan II (beta)</td><td><loq< td=""><td>2.5 0.050 pass</td></loq<></td></loq<>    | 2.5 0.050 pass           | Endosulfan II (beta) | <loq< td=""><td>2.5 0.050 pass</td></loq<>   | 2.5 0.050 pass                   |
| Endosulfan sulfate   | <loq< td=""><td>2.5 0.050 pass</td><td>Ethoprophos</td><td><loq< td=""><td>0.010 0.010 pass</td></loq<></td></loq<>           | 2.5 0.050 pass           | Ethoprophos          | <loq< td=""><td>0.010 0.010 pass</td></loq<> | 0.010 0.010 pass                 |
| tofenprox            | <loq< td=""><td>0.050 0.010 pass</td><td>Etoxazole</td><td><loq< td=""><td>0.020 0.010 pass</td></loq<></td></loq<>           | 0.050 0.010 pass         | Etoxazole            | <loq< td=""><td>0.020 0.010 pass</td></loq<> | 0.020 0.010 pass                 |
| tridiazole           | <loq< td=""><td>0.15 0.050 pass</td><td>Fenhexamid</td><td><loq< td=""><td>0.13 0.100 pass</td></loq<></td></loq<>            | 0.15 0.050 pass          | Fenhexamid           | <loq< td=""><td>0.13 0.100 pass</td></loq<>  | 0.13 0.100 pass                  |
| enoxycarb            | <loq< td=""><td>0.010 0.010 pass</td><td>Fenpyroximate</td><td><loq< td=""><td>0.020 0.020 pass</td></loq<></td></loq<>       | 0.010 0.010 pass         | Fenpyroximate        | <loq< td=""><td>0.020 0.020 pass</td></loq<> | 0.020 0.020 pass                 |
| ensulfothion         | <loq< td=""><td>0.010 0.010 pass</td><td>Fenthion</td><td><loq< td=""><td>0.010 0.010 pass</td></loq<></td></loq<>            | 0.010 0.010 pass         | Fenthion             | <loq< td=""><td>0.010 0.010 pass</td></loq<> | 0.010 0.010 pass                 |
| envalerate           | <loq< td=""><td>0.200</td><td>Fipronil</td><td><loq< td=""><td>0.010 0.010 pass</td></loq<></td></loq<>                       | 0.200                    | Fipronil             | <loq< td=""><td>0.010 0.010 pass</td></loq<> | 0.010 0.010 pass                 |
| Ionicamid            | <loq< td=""><td>0.025 0.025 pass</td><td>Fludioxonil</td><td><loq< td=""><td>0.010 0.010 pass</td></loq<></td></loq<>         | 0.025 0.025 pass         | Fludioxonil          | <loq< td=""><td>0.010 0.010 pass</td></loq<> | 0.010 0.010 pass                 |
| luopyram             | <loq< td=""><td>0.010 0.010 pass</td><td>Hexythiazox</td><td><loq< td=""><td>0.010 0.010 pass</td></loq<></td></loq<>         | 0.010 0.010 pass         | Hexythiazox          | <loq< td=""><td>0.010 0.010 pass</td></loq<> | 0.010 0.010 pass                 |
| mazalil              | <loq< td=""><td>0.010 0.010 pass</td><td>Imidacloprid</td><td><loq< td=""><td>0.010 0.010 pass</td></loq<></td></loq<>        | 0.010 0.010 pass         | Imidacloprid         | <loq< td=""><td>0.010 0.010 pass</td></loq<> | 0.010 0.010 pass                 |
| orodione             | <loq< td=""><td>0.50 0.500 pass</td><td>Kinoprene</td><td><loq< td=""><td>1.3 0.050 pass</td></loq<></td></loq<>              | 0.50 0.500 pass          | Kinoprene            | <loq< td=""><td>1.3 0.050 pass</td></loq<>   | 1.3 0.050 pass                   |
| Cresoxim-methyl      | <loq< td=""><td>0.15 0.010 pass</td><td>Malathion</td><td><loq< td=""><td>0.010 0.010 pass</td></loq<></td></loq<>            | 0.15 0.010 pass          | Malathion            | <loq< td=""><td>0.010 0.010 pass</td></loq<> | 0.010 0.010 pass                 |
| //etalaxyl           | <loq< td=""><td>0.010 0.010 pass</td><td>Methiocarb</td><td><loq< td=""><td>0.010 0.010 pass</td></loq<></td></loq<>          | 0.010 0.010 pass         | Methiocarb           | <loq< td=""><td>0.010 0.010 pass</td></loq<> | 0.010 0.010 pass                 |
| Methomyl             | <loq< td=""><td>0.025 0.025 pass</td><td>Methoprene</td><td><loq< td=""><td>2.0 1.00 pass</td></loq<></td></loq<>             | 0.025 0.025 pass         | Methoprene           | <loq< td=""><td>2.0 1.00 pass</td></loq<>    | 2.0 1.00 pass                    |
| Mevinphos            | <loq< td=""><td>0.025 0.025 pass</td><td>MGK-264</td><td><loq< td=""><td>0.050 0.050 pass</td></loq<></td></loq<>             | 0.025 0.025 pass         | MGK-264              | <loq< td=""><td>0.050 0.050 pass</td></loq<> | 0.050 0.050 pass                 |
| /lyclobutanil        | <loq< td=""><td>0.010 0.010 pass</td><td>Naled</td><td><loq< td=""><td>0.10 0.100 pass</td></loq<></td></loq<>                | 0.010 0.010 pass         | Naled                | <loq< td=""><td>0.10 0.100 pass</td></loq<>  | 0.10 0.100 pass                  |
| Novaluron            | <loq< td=""><td>0.025 0.025 pass</td><td>Oxamyl</td><td><loq< td=""><td>1.5 0.500 pass</td></loq<></td></loq<>                | 0.025 0.025 pass         | Oxamyl               | <loq< td=""><td>1.5 0.500 pass</td></loq<>   | 1.5 0.500 pass                   |
| Paclobutrazole       | <loq< td=""><td>0.010 0.010 pass</td><td>Parathion-Methyl</td><td><loq< td=""><td>0.050 0.030 pass</td></loq<></td></loq<>    | 0.010 0.010 pass         | Parathion-Methyl     | <loq< td=""><td>0.050 0.030 pass</td></loq<> | 0.050 0.030 pass                 |
| Permethrin           | <loq< td=""><td>0.50 0.040 pass</td><td>Phenothrin</td><td><loq< td=""><td>0.050 0.025 pass</td></loq<></td></loq<>           | 0.50 0.040 pass          | Phenothrin           | <loq< td=""><td>0.050 0.025 pass</td></loq<> | 0.050 0.025 pass                 |
| hosmet               | <loq< td=""><td>0.020 0.010 pass</td><td>Piperonyl butoxide</td><td><loq< td=""><td>1.3 0.200 pass</td></loq<></td></loq<>    | 0.020 0.010 pass         | Piperonyl butoxide   | <loq< td=""><td>1.3 0.200 pass</td></loq<>   | 1.3 0.200 pass                   |
| Pirimicarb           | <loq< td=""><td>0.010 0.010 pass</td><td>Prallethrin</td><td><loq< td=""><td>0.050 0.050 pass</td></loq<></td></loq<>         | 0.010 0.010 pass         | Prallethrin          | <loq< td=""><td>0.050 0.050 pass</td></loq<> | 0.050 0.050 pass                 |
| Propiconazole        | <loq< td=""><td>0.10 0.010 pass</td><td>Propoxur</td><td><loq< td=""><td>0.010 0.010 pass</td></loq<></td></loq<>             | 0.10 0.010 pass          | Propoxur             | <loq< td=""><td>0.010 0.010 pass</td></loq<> | 0.010 0.010 pass                 |
| yraclostrobin        | <loq< td=""><td>0.010 0.010 pass</td><td>Pyrethrins (total)</td><td>&lt; LOQ</td><td>0.050 0.025 pass</td></loq<>             | 0.010 0.010 pass         | Pyrethrins (total)   | < LOQ                                        | 0.050 0.025 pass                 |
| yridaben             | <loq< td=""><td>0.020 0.020 pass</td><td>Pyriproxyfen</td><td>&lt; LOQ</td><td>0.0100 0.010 pass</td></loq<>                  | 0.020 0.020 pass         | Pyriproxyfen         | < LOQ                                        | 0.0100 0.010 pass                |
| Quintozene           | <loq< td=""><td>0.020 0.020 pass</td><td>Resmethrin</td><td>&lt; LOQ</td><td>0.050 0.020 pass</td></loq<>                     | 0.020 0.020 pass         | Resmethrin           | < LOQ                                        | 0.050 0.020 pass                 |
| Spinetoram           | <loq< td=""><td>0.010 0.010 pass</td><td>Spinosad</td><td>&lt; LOQ</td><td>0.010 0.010 pass</td></loq<>                       | 0.010 0.010 pass         | Spinosad             | < LOQ                                        | 0.010 0.010 pass                 |
| Soineioram           |                                                                                                                               |                          |                      |                                              |                                  |

Page 4 of 13



Report Number: 22-009810/D002.R000

Report Date: 09/27/2022 ORELAP#: OR100028

**Purchase Order:** 

Received: 08/17/22 11:27

| Pesticides         | Method: AOA                                                                                               | AC 2007.01 & EN 15662 (mod) | Units mg/kg Batch 220700 | 5 <b>Analyze</b> 08/18/22 02:59 PM |
|--------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|------------------------------------|
| Analyte            | Result                                                                                                    | Limits LOQ Status Notes     | Analyte Resi             | ult Limits LOQ Status Notes        |
| Spirotetramat      | <loq< td=""><td>0.010 0.010 pass</td><td>Spiroxamine &lt; LO</td><td>Q 0.10 0.010 pass</td></loq<>        | 0.010 0.010 pass            | Spiroxamine < LO         | Q 0.10 0.010 pass                  |
| Tebuconazole       | <loq< td=""><td>0.010 0.010 pass</td><td>Tebufenozide &lt; LO</td><td>Q 0.010 0.010 pass</td></loq<>      | 0.010 0.010 pass            | Tebufenozide < LO        | Q 0.010 0.010 pass                 |
| Teflubenzuron      | <loq< td=""><td>0.025 0.025 pass</td><td>Tetrachlorvinphos &lt; LO</td><td>Q 0.010 0.010 pass</td></loq<> | 0.025 0.025 pass            | Tetrachlorvinphos < LO   | Q 0.010 0.010 pass                 |
| Tetramethrin       | <loq< td=""><td>0.10 0.050 pass</td><td>Thiabendazole &lt; LO</td><td>Q 0.0200 0.020 pass</td></loq<>     | 0.10 0.050 pass             | Thiabendazole < LO       | Q 0.0200 0.020 pass                |
| Thiacloprid        | <loq< td=""><td>0.010 0.010 pass</td><td>Thiamethoxam &lt; LO</td><td>Q 0.010 0.010 pass</td></loq<>      | 0.010 0.010 pass            | Thiamethoxam < LO        | Q 0.010 0.010 pass                 |
| Thiophanate-Methyl | <loq< td=""><td>0.050 0.030 pass</td><td>Trifloxystrobin &lt; LO</td><td>Q 0.010 0.010 pass</td></loq<>   | 0.050 0.030 pass            | Trifloxystrobin < LO     | Q 0.010 0.010 pass                 |

| Metals  |                                                                                                                                             |        |       |        |         |                                           |              |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|--------|---------|-------------------------------------------|--------------|
| Analyte | Result                                                                                                                                      | Limits | Units | LOQ    | Batch   | Analyzed Method                           | Status Notes |
| Arsenic | <loq< td=""><td>1.50</td><td>mg/kg</td><td>0.0958</td><td>2207043</td><td>08/19/22 AOAC 2013.06 (mod.)<sup>p</sup></td><td>pass</td></loq<> | 1.50   | mg/kg | 0.0958 | 2207043 | 08/19/22 AOAC 2013.06 (mod.) <sup>p</sup> | pass         |
| Cadmium | <loq< td=""><td>0.50</td><td>mg/kg</td><td>0.0958</td><td>2207043</td><td>08/19/22 AOAC 2013.06 (mod.)<sup>b</sup></td><td>pass</td></loq<> | 0.50   | mg/kg | 0.0958 | 2207043 | 08/19/22 AOAC 2013.06 (mod.) <sup>b</sup> | pass         |
| Lead    | < LOQ                                                                                                                                       | 0.50   | mg/kg | 0.0958 | 2207043 | 08/19/22 AOAC 2013.06 (mod.) <sup>b</sup> | pass         |
| Mercury | <loq< td=""><td>1.50</td><td>mg/kg</td><td>0.0479</td><td>2207043</td><td>08/19/22 AOAC 2013.06 (mod.)<sup>p</sup></td><td>pass</td></loq<> | 1.50   | mg/kg | 0.0479 | 2207043 | 08/19/22 AOAC 2013.06 (mod.) <sup>p</sup> | pass         |

| Mycotoxins                    |                                                                                                                                                         |        |       |      |         |                                                     |              |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|------|---------|-----------------------------------------------------|--------------|
| Analyte                       | Result                                                                                                                                                  | Limits | Units | LOQ  | Batch   | Analyzed Method                                     | Status Notes |
| Aflatoxin B2¥                 | <loq< td=""><td>5.00</td><td>µg/kg</td><td>5.00</td><td>2207083</td><td>08/22/22 AOAC 2007.01 &amp; EN 15662 (mod)<sup>p</sup></td><td>pass</td></loq<> | 5.00   | µg/kg | 5.00 | 2207083 | 08/22/22 AOAC 2007.01 & EN 15662 (mod) <sup>p</sup> | pass         |
| Aflatoxin B1¥                 | <loq< td=""><td>5.00</td><td>µg/kg</td><td>5.00</td><td>2207083</td><td>08/22/22 AOAC 2007.01 &amp; EN 15662 (mod)<sup>p</sup></td><td>pass</td></loq<> | 5.00   | µg/kg | 5.00 | 2207083 | 08/22/22 AOAC 2007.01 & EN 15662 (mod) <sup>p</sup> | pass         |
| Aflatoxin G1¥                 | <loq< td=""><td>5.00</td><td>µg/kg</td><td>5.00</td><td>2207083</td><td>08/22/22 AOAC 2007.01 &amp; EN 15662 (mod)<sup>p</sup></td><td>pass</td></loq<> | 5.00   | µg/kg | 5.00 | 2207083 | 08/22/22 AOAC 2007.01 & EN 15662 (mod) <sup>p</sup> | pass         |
| Aflatoxin G2¥                 | <loq< td=""><td>5.00</td><td>µg/kg</td><td>5.00</td><td>2207083</td><td>08/22/22 AOAC 2007.01 &amp; EN 15662 (mod)<sup>p</sup></td><td>pass</td></loq<> | 5.00   | µg/kg | 5.00 | 2207083 | 08/22/22 AOAC 2007.01 & EN 15662 (mod) <sup>p</sup> | pass         |
| Ochratoxin A <sup>y</sup>     | <loq< td=""><td>5.00</td><td>µg/kg</td><td>5.00</td><td>2207083</td><td>08/22/22 AOAC 2007.01 &amp; EN 15662 (mod)<sup>p</sup></td><td>pass</td></loq<> | 5.00   | µg/kg | 5.00 | 2207083 | 08/22/22 AOAC 2007.01 & EN 15662 (mod) <sup>p</sup> | pass         |
| Total Aflatoxins <sup>y</sup> | 0.000                                                                                                                                                   |        | µg/kg | 20.0 |         | 08/23/22 AOAC 2007.01 & EN 15662 (mod) <sup>p</sup> |              |



Report Number: 22-009810/D002.R000

Report Date: 09/27/2022

ORELAP#: OR100028

Purchase Order:

Received: 08/17/22 11:27

These test results are representative of the individual sample selected and submitted by the client.

## Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220, CCR title 16-division 42. BCC-section 5723

**Limit(s) of Quantitation (LOQ):** The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

Threshold Note: Action levels per 6 CCR 1010-21 CDPHE requirements

- b = ISO/IEC 17025:2017 accredited method.
- \* = TNI accredited analyte.

## Units of Measure

/25g = Per 25g

cfu/g = Colony forming units per gram

 $\mu$ g/g = Microgram per gram

 $\mu$ g/kg = Micrograms per kilogram = parts per billion (ppb)

mg/kg = Milligram per kilogram = parts per million (ppm)

% wt =  $\mu$ g/g divided by 10,000

Approved Signatory

Derrick Tanner General Manager